Ultra-low Energy Calibration of the LUX detector with pulsed D-D neutrons and ¹²⁷Xe Electron Capture Events

Dongqing Huang Brown University

On Behalf of the LUX Collaboration

CPAD Instrumentation Frontier Workshop 2018

Providence, RI

Dec 10th 2018

Sec 1: LUX NR Energy Calibration using Pulsed D-D neutron

LUX Experiment

- LUX carried out two WIMP search runs from 2013 to 2016 (95 live days + 332 live days) arXiv:1608.07648
- LUX has also carried out a significant amount of calibrations for LXe NR and ER response
- LUX is leading the field of the NR calibration with DD neutron source arXiv:1608.05381
- I will present a way to further improve this technique

LUX DD Neutron Calibration Review

Previous LUX DD NR Calibration Results

Blue crosses are LUX DD
 Qy measurements

(see backup slides for Ly)

 Red bars (top and bottom) indicates the systematic

uncertainties

D.S. Akerib et al. (LUX Collaboration), (2016), arXiv:1608.05381

Energy | keV_{nra}|

- neutron generator neutron production
- The DD trigger time is recorded in synchronization with LUX neutron event signals
- Neutron time of flight is at an order of 100 ns, negligible given typical S2 width(10%-90%) at ~2 us.

Event can be explored before DD trigger implemented:

Event can be explored after DD trigger implemented:

DD trigger can replace S1 to define event t0 time

Advantages of Pulsed DD Neutron:

- Probe no S1 one S2 neutron event
- 2. Reduce calibration background with increased instantaneous intensity but 0.5% duty cycle
- 3. Establish calibration background with events before neutron pulse to reduce systematics
- 4. Probe other physics associated with neutron (e.g. thermal component)

Neutron Event Time Structure (S1 wrt DD Trigger)

S2 Arrival Time wrt DD Trigger

S2 Spectrum of Events With Pulsed Neutron

Dongqing Huang - B S2 [Num. Electron at Site] 18, Providence RI

S2 Spectrum of Events With Pulsed Neutron

shold: 1.7 e-

S2 Spectrum @ S1=0,1,2,3,4 phd

(see backup slides for LUX S1 resolution)

All figures in this slide LUX Preliminary

CPAD 2018, Providence RI

Discussion and Conclusion For DD NR Calibration

- 1. Compare data and sim of relative counts among S1=0, 1, 2, 3, and 4 phd to measure NR light yields
- 2. Compare data and sim of S2 spectra at S1=0 and 1 phd to measure NR charge yields
- 3. Additional work (not presented at this talk) has shown good agreement between LUX pulsed DD neutron data and Sim modeling
- 4. Additional work (not presented at this talk) has demonstrated LUX pulsed DD neutron data has an sensitivity to 0.2 keVnr, a significant step beyond the most accurate low energy calibrations by LUX Run3 DD calibration
- 5. Final Result will be available to public early of 2019

Sec 2: LUX ER Energy Calibration using ¹²⁷Xe Electron Capture Events

Xenon-127 Decay Toy Model

 Based on the measurement of Apr22 2013 data, there are ~0.8million ¹²⁷Xe atoms in LUX Xenon volume

Xenon-127 EC Decay Event in LUX Detector

Fig. - A real 127Xe decay event with K shell electron capture. The event waveform appears as one S1 followed by two well-operated S2s

Fig. - Event Schematics in Detector

Xenon-127 EC Events in Data

Fig. - Scatter plot of 127Xe events with area of first vertex S2 versus are of second vertex S2; "First Vertex" is the first S2 ordered by drift time

Fig. - X-rays' ER charge spectrum

Xenon-127 Charge Yields

https://arxiv.org/pdf/ 1709.00800.pdf

Conclusion

- LUX has achieved a better understanding of Xe NR and ER response than any other dark matter search experiment
- In-situ calibration
- These results further improves LXe TPC to low mass WIMPs and Neutrino Scattering

Backup

Previous LUX DD NR Calibration Results - Ly

Neutron Event Time Structure WRT DD Trigger

Log scale:

S1 Resolution

